Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

Identifieur interne : 001F01 ( Main/Exploration ); précédent : 001F00; suivant : 001F02

Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

Auteurs : Javid Ahmad Dar [Oman] ; Sundarapandian Somaiah

Source :

RBID : pubmed:25619695

Descripteurs français

English descriptors

Abstract

Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

DOI: 10.1007/s10661-014-4204-9
PubMed: 25619695


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.</title>
<author>
<name sortKey="Ahmad Dar, Javid" sort="Ahmad Dar, Javid" uniqKey="Ahmad Dar J" first="Javid" last="Ahmad Dar">Javid Ahmad Dar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry, 605014, India, javiddar29@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry, 605014, India</wicri:regionArea>
<wicri:noRegion>India</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Somaiah, Sundarapandian" sort="Somaiah, Sundarapandian" uniqKey="Somaiah S" first="Sundarapandian" last="Somaiah">Sundarapandian Somaiah</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25619695</idno>
<idno type="pmid">25619695</idno>
<idno type="doi">10.1007/s10661-014-4204-9</idno>
<idno type="wicri:Area/Main/Corpus">001E34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E34</idno>
<idno type="wicri:Area/Main/Curation">001E34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E34</idno>
<idno type="wicri:Area/Main/Exploration">001E34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.</title>
<author>
<name sortKey="Ahmad Dar, Javid" sort="Ahmad Dar, Javid" uniqKey="Ahmad Dar J" first="Javid" last="Ahmad Dar">Javid Ahmad Dar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry, 605014, India, javiddar29@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry, 605014, India</wicri:regionArea>
<wicri:noRegion>India</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Somaiah, Sundarapandian" sort="Somaiah, Sundarapandian" uniqKey="Somaiah S" first="Sundarapandian" last="Somaiah">Sundarapandian Somaiah</name>
</author>
</analytic>
<series>
<title level="j">Environmental monitoring and assessment</title>
<idno type="eISSN">1573-2959</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Altitude (MeSH)</term>
<term>Carbon (analysis)</term>
<term>Carbon Cycle (MeSH)</term>
<term>Carbon Sequestration (MeSH)</term>
<term>Climate Change (MeSH)</term>
<term>Environmental Monitoring (MeSH)</term>
<term>Forests (MeSH)</term>
<term>India (MeSH)</term>
<term>Pinus (MeSH)</term>
<term>Soil (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Altitude (MeSH)</term>
<term>Carbone (analyse)</term>
<term>Changement climatique (MeSH)</term>
<term>Cycle du carbone (MeSH)</term>
<term>Forêts (MeSH)</term>
<term>Inde (MeSH)</term>
<term>Pinus (MeSH)</term>
<term>Sol (composition chimique)</term>
<term>Surveillance de l'environnement (MeSH)</term>
<term>Séquestration du carbone (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Altitude</term>
<term>Carbon Cycle</term>
<term>Carbon Sequestration</term>
<term>Climate Change</term>
<term>Environmental Monitoring</term>
<term>Forests</term>
<term>India</term>
<term>Pinus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Altitude</term>
<term>Changement climatique</term>
<term>Cycle du carbone</term>
<term>Forêts</term>
<term>Inde</term>
<term>Pinus</term>
<term>Surveillance de l'environnement</term>
<term>Séquestration du carbone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25619695</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-2959</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>187</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Environmental monitoring and assessment</Title>
<ISOAbbreviation>Environ Monit Assess</ISOAbbreviation>
</Journal>
<ArticleTitle>Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.</ArticleTitle>
<Pagination>
<MedlinePgn>11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10661-014-4204-9</ELocationID>
<Abstract>
<AbstractText>Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ahmad Dar</LastName>
<ForeName>Javid</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry, 605014, India, javiddar29@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Somaiah</LastName>
<ForeName>Sundarapandian</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Environ Monit Assess</MedlineTA>
<NlmUniqueID>8508350</NlmUniqueID>
<ISSNLinking>0167-6369</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000531" MajorTopicYN="N">Altitude</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057486" MajorTopicYN="N">Carbon Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057965" MajorTopicYN="Y">Carbon Sequestration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="N">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="Y">Environmental Monitoring</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="Y">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007194" MajorTopicYN="N">India</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25619695</ArticleId>
<ArticleId IdType="doi">10.1007/s10661-014-4204-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2011 Aug 19;333(6045):988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Jul;20(13):849-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11303575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2011 Sep;36(4):701-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21857116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e57024</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2010 Jul;53(7):831-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20697872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbon Balance Manag. 2009 Aug 25;4:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 11;304(5677):1623-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15192216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1998 Oct;116(4):536-542</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 9;440(7081):165-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Apr 23;458(7241):1009-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jan 14;263(5144):185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17839174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 20;8(8):e72201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23977252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2010 Jul;123(4):439-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20127501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ying Yong Sheng Tai Xue Bao. 2005 Jul;16(7):1195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16252851</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Oman</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Somaiah, Sundarapandian" sort="Somaiah, Sundarapandian" uniqKey="Somaiah S" first="Sundarapandian" last="Somaiah">Sundarapandian Somaiah</name>
</noCountry>
<country name="Oman">
<noRegion>
<name sortKey="Ahmad Dar, Javid" sort="Ahmad Dar, Javid" uniqKey="Ahmad Dar J" first="Javid" last="Ahmad Dar">Javid Ahmad Dar</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25619695
   |texte=   Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25619695" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020